满分5 > 高中数学试题 >

某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2...

某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.

(1)员工甲抽奖一次所得奖金的分布列与期望;

(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?

 

(1)分布列如图,;(2) 【解析】 试题本题主要考查生活中的概率知识,离散型随机变量的分布列和数学期望以及二项分布的方差问题,考查学生的分析能力和计算能力.第一问,10个球中摸3个,所以基本事件总数为,的可能取值为4种,分别数出每一种情况符合题意的种数,与基本事件总数相除求出4个概率值,列出分布列,利用求期望;第二问,利用第一问分布列的结论,用间接法先求出乙一次抽奖中奖的概率,通过分析题意,可得中奖次数符合二项分布,利用的公式计算方差. 试题解析:(1)甲抽奖一次,基本事件的总数为,奖金的所有可能取值为0,30,60,240. 一等奖的情况只有一种,所有奖金为120元的概率为, 三球连号的情况有1,2,3;2,3,4;……8,9,10共8种,得60元的概率为, 仅有两球连号中,对应1,2与9,10的各有7种:对应2,3;3,4;……8,9各有6种. 得奖金30元的概率为, 得奖金0元的概率为, 的分布列为: (2)由(1)可得乙一次抽奖中中奖的概率为 四次抽奖是相互独立的,所以中奖次数 故.
复制答案
考点分析:
相关试题推荐

.变量X的概率分布列如右表,其中成等差数列,若,则_________.

 

查看答案

在某批次的某种灯泡中,随机地抽取个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.

寿命(天)

频数

频率

合计

 

1)根据频率分布表中的数据,写出的值;

2)某人从灯泡样品中随机地购买了个,如果这个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求的最小值;

3)某人从这个批次的灯泡中随机地购买了个进行使用,若以上述频率作为概率,用表示此人所购买的灯泡中次品的个数,求的分布列和数学期望.

 

查看答案

一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.

1)设每盘游戏获得的分数为,求的分布列;

2)玩三盘游戏,至少有一盘出现音乐的概率是多少?

3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.

 

查看答案

设服从二项分布的随机变量的期望和方差分别是,则二项分布的参数的值分别为________________.

 

查看答案

甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.

1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件;

2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X,求X的分布列和期望.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.