已知椭圆的离心率为,以原点为圆心,椭圆短半轴长半径的圆与直线相切.
(1)求与;
(2)设该椭圆的左、右焦点分别为和,直线过且与轴垂直,动直线与轴垂直,交与点.求线段垂直平分线与的交点的轨迹方程,并指明曲线类型.
某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
如图,三棱柱的各棱长均为2,侧面底面,侧棱与底面所成的角为.
(Ⅰ)求直线与底面所成的角;
(Ⅱ)在线段上是否存在点,使得平面平面?若存在,求出的长;若不存在,请说明理由.
设等差数列的前项和为,是等比数列,且,,,,是否存在,使,且?若存在,求的值.若不存在,则说明理由.
已知函数(,)为奇函数,且相邻两对称轴间的距离为.
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.
若不等式的解集是,求不等式的解集.