在极坐标系中,已知两点,直线l的方程为.
(1)求A,B两点间的距离;
(2)求点B到直线l的距离.
如图,圆.
(1)若圆C与x轴相切,求圆C的方程;
(2)已知,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M任作一条直线与圆相交于两点A,B.问:是否存在实数a,使得?若存在,求出实数a的值,若不存在,请说明理由.
已知四棱锥中,底面是直角梯形,∥,,,,又平面,且,点在棱上且.
(1)求证:;
(2)求与平面所成角的正弦值;
(3)求二面角的大小.
已知定点M(0,2),N(-2,0),直线l:kx-y-2k+2=0(k为常数).
(1)若点M,N到直线l的距离相等,求实数k的值;
(2)对于l上任意一点P,∠MPN恒为锐角,求实数k的取值范围.
已知,求的最小值.
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.