阅读下列有关光线的入射与反射的两个事实现象:现象(1):光线经平面镜反射满足入射角与反射角相等(如图);现象(2);光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图).试结合,上述事实现象完成下列问题:
(Ⅰ)有一椭圆型台球桌,长轴长为2a,短轴长为2b.将一放置于焦点处的桌球击出.经过球桌边缘的反射(假设球的反射充全符合现象(2)),后第一次返回到该焦点时所经过的路程记为S,求S的值(用a,b表示);
(Ⅱ)结论:椭圆上任点P(x0,y0)处的切线的方程为.记椭圆C的方程为C:,在直线x=4上任一点M向椭圆C引切线,切点分别为A,B.求证:直线lAB恒过定点:
(Ⅲ)过点T(1,0)的直线l(直线l斜率不为0)与椭圆C:交于P、Q两点,是否存在定点S(s,0),使得直线SP与SQ斜率之积为定值,若存在求出S坐标;若不存在,请说明理由.
如图,在多面体中,四边形,,均为正方形,点M是的中点,点H在线段上,且与平面所成角的正弦值为.
(1)求证:平面;
(2)求二面角的正弦值.
已知点,(其中)是曲线上的两点,,两点在轴上的射影分别为点,且.
(1)当点的坐标为时,求直线的方程;
(2)记的面积为,梯形的面积为,求的范围.
如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求证:平面DAF⊥平面CBF;
(Ⅱ)当AD=1时,求直线FB与平面DFC所成角的正弦值.
已知圆M过两点A(1,﹣1),B(﹣1,1),且圆心M在x+y﹣2=0上,
(Ⅰ)求圆M的方程;
(Ⅱ)设P是直线x+y+2=0上的动点.PC,PD是圆M的两条切线,C,D为切点,求四边形PCMD面积的最小值.
如图,边长为4的正方形ABCD中,点E是AB的中点,点F是BC中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.
(Ⅰ)求证A'D⊥EF;
(Ⅱ)求三棱锥A'﹣EFD的体积.