集合,,则为( )
A. B. C. D.
已知a>0,函数f(x)=|2x+2|+|x﹣a|的最小值为2.
(1)求实数a的值,并作出y=f(x)的图象;
(2)当m>0,n>0,且m+n=2时,m2+n2≥f(x)恒成立,求实数x的取值范围.
在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C2的参数方程为(β为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1和C2的极坐标方程;
(2)若点A在曲线C1上,点B在曲线C2上,且∠AOB,求|OA|•|OB|的最大值.
已知函数f(x)a2x(k∈R,a>0,e为自然对数的底数),且曲线f(x)在点(1,f(1))处的切线的斜率为e2﹣a2.
(1)求实数k的值,并讨论函数f(x)的单调性;
(2)设函数g(x),若对∀x1∈(0,+∞),∃x2∈R,使不等式f(x2)≤g(x1)﹣1成立,求实数a的取值范围.
如图,点C在以AB为直径的圆上运动,PA⊥平面ABC,且PA=AC,D,E分别是PC,PB的中点.
(1)求证:PC⊥平面ADE.
(2)若二面角C﹣AE﹣B为60°,求直线AB与平面ADE所成角的大小.
已知圆O:x2+y2=3上的一动点M在x轴上的投影为N,点P满足.
(1)求动点P的轨迹C的方程;
(2)若直线l与圆O相切,且交曲线C于点A,B,试求|AB|的最大值.