满分5 > 高中数学试题 >

如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB...

如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥ABAB是圆O的直径).规划在公路l上选两个点PQ,并修建两段直线型道路PBQA.规划要求:线段PBQA上的所有点到点O的距离均不小于圆O的半径.已知点AB到直线l的距离分别为ACBDCD为垂足),测得AB=10AC=6BD=12(单位:百米).

1)若道路PB与桥AB垂直,求道路PB的长;

2)在规划要求下,PQ中能否有一个点选在D处?并说明理由;

3)对规划要求下,若道路PBQA的长度均为d(单位:百米).求当d最小时,PQ两点间的距离.

 

(1)15(百米); (2)见解析; (3)17+(百米). 【解析】 【解析】 解法一: (1)过A作,垂足为E.利用几何关系即可求得道路PB的长; (2)分类讨论P和Q中能否有一个点选在D处即可. (3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,P、Q两点间的距离. 解法二: (1)建立空间直角坐标系,分别确定点P和点B的坐标,然后利用两点之间距离公式可得道路PB的长; (2)分类讨论P和Q中能否有一个点选在D处即可. (3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,P、Q两点间的距离. 解法一: (1)过A作,垂足为E. 由已知条件得,四边形ACDE为矩形,. 因为PB⊥AB, 所以. 所以. 因此道路PB的长为15(百米). (2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求. ②若Q在D处,连结AD,由(1)知, 从而,所以∠BAD为锐角. 所以线段AD上存在点到点O的距离小于圆O的半径. 因此,Q选在D处也不满足规划要求. 综上,P和Q均不能选在D处. (3)先讨论点P的位置. 当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求; 当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求. 设为l上一点,且,由(1)知,, 此时; 当∠OBP>90°时,在中,. 由上可知,d≥15. 再讨论点Q的位置. 由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,.此时,线段QA上所有点到点O的距离均不小于圆O的半径. 综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+. 因此,d最小时,P,Q两点间的距离为17+(百米). 解法二: (1)如图,过O作OH⊥l,垂足为H. 以O为坐标原点,直线OH为y轴,建立平面直角坐标系. 因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3. 因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25. 从而A(4,3),B(−4,−3),直线AB的斜率为. 因为PB⊥AB,所以直线PB的斜率为, 直线PB的方程为. 所以P(−13,9),. 因此道路PB的长为15(百米). (2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求. ②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3), 所以线段AD:. 在线段AD上取点M(3,),因为, 所以线段AD上存在点到点O的距离小于圆O的半径. 因此Q选在D处也不满足规划要求. 综上,P和Q均不能选在D处. (3)先讨论点P的位置. 当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求; 当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求. 设为l上一点,且,由(1)知,,此时; 当∠OBP>90°时,在中,. 由上可知,d≥15. 再讨论点Q的位置. 由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求. 当QA=15时,设Q(a,9),由, 得a=,所以Q(,9),此时,线段QA上所有点到点O的距离均不小于圆O的半径. 综上,当P(−13,9),Q(,9)时,d最小,此时P,Q两点间的距离 . 因此,d最小时,P,Q两点间的距离为(百米).
复制答案
考点分析:
相关试题推荐

设函数

(1)若函数在定义域上为增函数,求实数的取值范围;

(2)在(Ⅰ)的条件下,若函数使得成立,求实数的取值范围.

 

查看答案

已知椭圆的焦距为,且过点

()求椭圆的方程;

()分别是椭圆的下顶点和上顶点, 是椭圆上异于的任意一点,过点轴于为线段的中点,直线与直线交于点为线段的中点, 为坐标原点,求证:

 

查看答案

已知函数,其导函数的两个零点为.

(I)求曲线在点处的切线方程;

(II)求函数的单调区间;

(III)求函数在区间上的最值.

 

查看答案

如图,在四棱锥中,平面平面是等边三角形,已知.

(1)设上一点,求证:平面平面

(2)求四棱锥的体积.

 

查看答案

已知下面两个命题:

命题使;命题,都有.是真命题,求实数的取值范围.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.