满分5 > 高中数学试题 >

某农场有一块农田,如图所示,它的边界由圆的一段圆弧(为此圆弧的中点)和线段构成....

某农场有一块农田,如图所示,它的边界由圆的一段圆弧为此圆弧的中点)和线段构成.已知圆的半径为40米,点的距离为50米.现规划在此农田上修建两个温室大棚,大棚内的地块形状为矩形,大棚内的地块形状为,要求均在线段上,均在圆弧上.设所成的角为

(1)用分别表示矩形的面积,并确定的取值范围;

(2)若大棚内种植甲种蔬菜,大棚内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.

 

(1), ;(2). 【解析】 (1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法. 【解析】 (1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10. 过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ, 故OE=40cosθ,EC=40sinθ, 则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ), △CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ). 过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10. 令∠GOK=θ0,则sinθ0=,θ0∈(0,). 当θ∈[θ0,)时,才能作出满足条件的矩形ABCD, 所以sinθ的取值范围是[,1). 答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为 1600(cosθ–sinθcosθ),sinθ的取值范围是[,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3, 设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0), 则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ) =8000k(sinθcosθ+cosθ),θ∈[θ0,). 设f(θ)= sinθcosθ+cosθ,θ∈[θ0,), 则. 令,得θ=, 当θ∈(θ0,)时,,所以f(θ)为增函数; 当θ∈(,)时,,所以f(θ)为减函数, 因此,当θ=时,f(θ)取到最大值. 答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.
复制答案
考点分析:
相关试题推荐

如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥ABAB是圆O的直径).规划在公路l上选两个点PQ,并修建两段直线型道路PBQA.规划要求:线段PBQA上的所有点到点O的距离均不小于圆O的半径.已知点AB到直线l的距离分别为ACBDCD为垂足),测得AB=10AC=6BD=12(单位:百米).

1)若道路PB与桥AB垂直,求道路PB的长;

2)在规划要求下,PQ中能否有一个点选在D处?并说明理由;

3)对规划要求下,若道路PBQA的长度均为d(单位:百米).求当d最小时,PQ两点间的距离.

 

查看答案

设函数

(1)若函数在定义域上为增函数,求实数的取值范围;

(2)在(Ⅰ)的条件下,若函数使得成立,求实数的取值范围.

 

查看答案

已知椭圆的焦距为,且过点

()求椭圆的方程;

()分别是椭圆的下顶点和上顶点, 是椭圆上异于的任意一点,过点轴于为线段的中点,直线与直线交于点为线段的中点, 为坐标原点,求证:

 

查看答案

已知函数,其导函数的两个零点为.

(I)求曲线在点处的切线方程;

(II)求函数的单调区间;

(III)求函数在区间上的最值.

 

查看答案

如图,在四棱锥中,平面平面是等边三角形,已知.

(1)设上一点,求证:平面平面

(2)求四棱锥的体积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.