满分5 > 高中数学试题 >

如图,有一块半圆形空地,开发商计划建造一个矩形游泳池及左右两侧两个大小相同的矩形...

如图,有一块半圆形空地,开发商计划建造一个矩形游泳池及左右两侧两个大小相同的矩形休息区,其中半圆的圆心为,半径为,矩形的一边上,矩形的一边上,点在圆周上,在直径上,且,设.若每平方米游泳池的造价和休息区造价分别为.

1)记游泳池及休息区的总造价为,求的表达式;

2)为进行投资预算,当为何值时,总造价最大?并求出总造价的最大值.

 

(1)(2),最大值为 【解析】 (1)用三角函数表示和的长度,进而分别表示游泳池和休息区的面积,由分别的面积乘以单价再相加即可表示总造价; (2)对(1)中求导并因式分解,令,解得,分析单调性在 上单调递增,在上单调递减,即在时,求得最大值. (1)由图可知在矩形中,, 所以,. 在矩形中,, 所以, 因为游泳池每平方米的造价为,休息区每平方米造价为 所以, (2)由(1)得, , 因为,所以. 令,解得.因为,所以. 列表如下: 0 极大值 所以,当时,总造价取得极大值,即最大值为
复制答案
考点分析:
相关试题推荐

如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EGE1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;

(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

 

查看答案

某农场有一块农田,如图所示,它的边界由圆的一段圆弧为此圆弧的中点)和线段构成.已知圆的半径为40米,点的距离为50米.现规划在此农田上修建两个温室大棚,大棚内的地块形状为矩形,大棚内的地块形状为,要求均在线段上,均在圆弧上.设所成的角为

(1)用分别表示矩形的面积,并确定的取值范围;

(2)若大棚内种植甲种蔬菜,大棚内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.

 

查看答案

如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥ABAB是圆O的直径).规划在公路l上选两个点PQ,并修建两段直线型道路PBQA.规划要求:线段PBQA上的所有点到点O的距离均不小于圆O的半径.已知点AB到直线l的距离分别为ACBDCD为垂足),测得AB=10AC=6BD=12(单位:百米).

1)若道路PB与桥AB垂直,求道路PB的长;

2)在规划要求下,PQ中能否有一个点选在D处?并说明理由;

3)对规划要求下,若道路PBQA的长度均为d(单位:百米).求当d最小时,PQ两点间的距离.

 

查看答案

设函数

(1)若函数在定义域上为增函数,求实数的取值范围;

(2)在(Ⅰ)的条件下,若函数使得成立,求实数的取值范围.

 

查看答案

已知椭圆的焦距为,且过点

()求椭圆的方程;

()分别是椭圆的下顶点和上顶点, 是椭圆上异于的任意一点,过点轴于为线段的中点,直线与直线交于点为线段的中点, 为坐标原点,求证:

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.