如图,某公园内有一块矩形绿地区域ABCD,已知AB=100米,BC=80米,以AD,BC为直径的两个半圆内种植花草,其它区域种值苗木. 现决定在绿地区域内修建由直路BN,MN和弧形路MD三部分组成的观赏道路,其中直路MN与绿地区域边界AB平行,直路为水泥路面,其工程造价为每米2a元,弧形路为鹅卵石路面,其工程造价为每米3a元,修建的总造价为W元. 设.
(1)求W关于的函数关系式;
(2)如何修建道路,可使修建的总造价最少?并求最少总造价.
如图,某公园有三条观光大道、、围成直角三角形,其中直角边,斜边,现有甲、乙、丙三位小朋友分别在、、大道上嬉戏,所在位置分别记为点、、.
(1)若甲乙都以每分钟100的速度从点出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离;
(2)设,乙丙之间的距离是甲乙之间距离的2倍,且,请将甲乙之间的距离表示为的函数,并求甲乙之间的最小距离.
如图,某城市小区有一个矩形休闲广场,米,广场的一角是半径为米的扇形绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅(宽度不计),点在线段上,并且与曲线相切;另一排为单人弧形椅沿曲线(宽度不计)摆放.已知双人靠背直排椅的造价每米为元,单人弧形椅的造价每米为元,记锐角,总造价为元.
(1)试将表示为的函数,并写出的取值范围;
(2)如何选取点的位置,能使总造价最小.
如图,B,C分别是海岸线上的两个城市,两城市间由笔直的海滨公路相连,B,C之间的距离为100km,海岛A在城市B的正东方50处.从海岛A到城市C,先乘船按北偏西θ角(,其中锐角的正切值为)航行到海岸公路P处登陆,再换乘汽车到城市C.已知船速为25km/h,车速为75km/h.
(1)试建立由A经P到C所用时间与的函数解析式;
(2)试确定登陆点P的位置,使所用时间最少,并说明理由.
某公园要设计如图所示的景观窗格(其结构可以看成矩形在四个角处对称地截去四个全等的三角形所得,如图二中所示多边形),整体设计方案要求:内部井字形的两根水平横轴米,两根竖轴米,记景观窗格的外框(如图二实线部分,轴和边框的粗细忽略不计)总长度为米.
(1)若,且两根横轴之间的距离为米,求景观窗格的外框总长度;
(2)由于预算经费限制,景观窗格的外框总长度不超过米,当景观窗格的面积(多边形的面积)最大时,给出此景观窗格的设计方案中的大小与的长度.
如图,三个校区分别位于扇形OAB的三个顶点上,点Q是弧AB的中点,现欲在线段OQ上找一处开挖工作坑P(不与点O,Q重合),为小区铺设三条地下电缆管线PO,PA,PB,已知OA=2千米,∠AOB=,记∠APQ=θrad,地下电缆管线的总长度为y千米.
(1)将y表示成θ的函数,并写出θ的范围;
(2)请确定工作坑P的位置,使地下电缆管线的总长度最小.