某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案①:规定每日底薪50元,快递业务每完成一单提成3元;方案②:规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为,,,,,,七组,整理得到如图所示的频率分布直方图.
(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;
(2)若骑手甲、乙选择了日工资方案①,丙、丁选择了日工资方案②.现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案①的概率;
(3)若从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)
如图,在四棱柱中,面,,,,分别为中点,.
(1)求的长度;
(2)若线段与三点所确定的平面交于点,求的值.
已知数列为等比数列,且
(1)求公比和的值;
(2)若的前项和为,求证:,,成等差数列.
已知点,,在半径为2的球的球面上,且,,两两所成的角相等,则当三棱锥的体积最大时,平面截球所得的截面圆的面积为_______.
已知是直角斜边上一点,,,若的面积是面积的两倍,则__________.
若是偶函数,则_______.