某人经营淡水池塘养草鱼,根据过去期的养殖档案,该池塘的养殖重量(百斤)都在百斤以上,其中不足百斤的期,不低于百斤且不超过百斤的有期,超过百斤的有期.根据统计,该池塘的草鱼重量的增加量(百斤)与使用某种饵料的质量(百斤)之间的关系如图所示.
鱼的重量(单位:百斤) | |||
冲水机运行台数 | 1 | 2 | 3 |
(1)根据数据可知与具有线性相关关系,请建立关于的回归方程;如果此人设想使用某种饵料百斤时,草鱼重量的增加量须多于百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.
(2)养鱼的池塘对水质含氧与新鲜度要求较高,故养殖户需设置若干台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有关,并有如下关系:
若某台增氧冲水机运行,则该台冲水机每期盈利千元;若某台冲水机未运行,则该台冲水机每期亏损千元.以频率 作为概率,养殖户欲使每期冲水机总利润的均值达到最大,应安装几台增氧冲水机?
附:对于一组数据,其回归方程的斜率和截距的最小二乘估计公式分别为:,.
已知椭圆的离心率为,右焦点为,点,直线与圆相切.
(1)求直线和椭圆的方程;
(2)直线与椭圆交于两点,为椭圆上的两点,若四边形的对角线,求四边形面积的最大值.
如图,在四棱锥中,,,,.
(1)求证:平面平面;
(2)若二面角的正切值为,求与平面所成角的余弦值.
数列满足,.
(1)求证:数列是等比数列,并求出的通项公式;
(2)若,求数列的前项和.
已知点是的内心,若,则______.
已知双曲线的右焦点为,点在双曲线的一条渐近线上,且,则双曲线的离心率是______.