已知函数,其中
为自然对数的底数.
(1)当时,讨论函数的单调性;
(2)当时,求证:对任意的.
过抛物线的焦点且斜率为1的直线交抛物线于,两点,且.
(Ⅰ)求抛物线的方程;
(Ⅱ)抛物线上一点,直线(其中)与抛物线交于,两个不同的点(,均不与点重合).设直线,的斜率分别为,,.直线是否过定点?如果是,请求出所有定点;如果不是,请说明理由.
四棱锥中,底面为矩形,.侧面底面.
(1)证明:;
(2)设与平面所成的角为,求二面角的余弦值.
现有一环保型企业,为了节约成本拟进行生产改造,现将某种产品产量与单位成本统计数据如下:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
产量(千件) | 2 | 3 | 4 | 5 | 4 | 5 |
单位成本(元/件) | 73 | 72 | 71 | 73 | 69 | 68 |
(Ⅰ)试确定回归方程;
(Ⅱ)指出产量每增加1000件时,单位成本平均下降多少?
(Ⅲ)假定单位成本为70元/件时,产量应为多少件?
(参考公式:.)
(参考数据 )
已知圆过三点,直线.
(Ⅰ)求圆的方程
(Ⅱ)当直线与圆相交于,两点,且时,求直线的方程.
为了解小学生的体能情况,现抽取某小学六年级100名学生进行跳绳测试,观察记录孩子们三分钟内的跳绳个数,将所得的数据整理后画出频率分布直方图,跳绳个数的数值落在区间,,内的频率之比为.(计算结果保留小数点后面3位)
(Ⅰ)求这些学生跳绳个数的数值落在区间内的频率;
(Ⅱ)用分层抽样的方法在区间内抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2个学生,求这2个学生跳绳个数的数值都在区间内的概率.