满分5 > 高中数学试题 >

已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2...

已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).

(Ⅰ) 求函数f(x)的表达式;

(Ⅱ) 证明:a>3,关于x的方程f(x)= f(a)有三个实数解.

 

(Ⅰ) f(x)=x2+.(Ⅱ) 见详解 【解析】 试题(Ⅰ)由已知,设f1(x)=ax2,由f1(1)=1,得a="1," ∴f1(x)= x2.设f2(x)=(k>0),它的图象与直线y=x的交点分别为A(,),B(-,-) 由=8,得k="8,." ∴f2(x)=.故f(x)=x2+. (Ⅱ) (证法一)f(x)=f(a),得x2+=a2+, 即=-x2+a2+.在同一坐标系内作出f2(x)=和 f3(x)= -x2+a2+的大致图象,其中f2(x)的图象是以坐 标轴为渐近线,且位于第一、三象限的双曲线, f3(x)与的图象是以(0, a2+)为顶点,开口向下的抛物线.因此, f2(x)与f3(x)的图象在第三象限有一个交点,即f(x)=f(a)有一个负数解.又∵f2(2)="4," f3(2)= -4+a2+,当a>3时,. f3(2)-f2(2)= a2+-8>0,当a>3时,在第一象限f3(x)的图象上存在一点(2,f(2))在f2(x)图象的上方.f2(x)与f3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解.因此,方程f(x)=f(a)有三个实数解. (证法二)由f(x)=f(a),得x2+=a2+,即(x-a)(x+a-)=0,得方程的一个解x1=a.方程x+a-=0化为ax2+a2x-8=0,由a>3,△=a4+32a>0,得x2=, x3=,x2<0, x3>0, ∵x1≠ x2,且x2≠ x3.若x1= x3,即a=,则3a2=, a4=4a,得a=0或a=,这与a>3矛盾,∴x1≠ x3.故原方程f(x)=f(a)有三个实数解.
复制答案
考点分析:
相关试题推荐

设函数f(x)=|x﹣a|+3x,其中a>0.

(1)当a=1时,求不等式f(x)>3x+2的解集;

(2)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.

 

查看答案

已知集合AB.

1)当2时,求AB; (2)求使BA的实数的取值范围.

 

查看答案

某商场对顾客实行购物优惠活动,规定 :一次购物总额

1)如果不超过500元,那么不予优惠;

2)如果超过500元但不超过1000元,那么超过500元部分按标价给予8折优惠;

3)如果超过1000元,那么其中超过500不超过1000元给予8折优惠,超过1000元部分给予5折优惠.设一次购物标价总额为x元,优惠后实际付款额为f(x).

1)试写出f(x)的解析式;

2)如果某顾客实际付款额为1600元,在这次优惠活动中他实际付款额比购物标价总额少支出多少元?

 

查看答案

已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

 

查看答案

xyR+,且x+y+xy=2.

1)求x+y的取值范围;

2)求xy的取值范围.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.