我们知道,当时,如果把按照从大到小的顺序排成一列的话,一个美丽、大方、优雅的均值不等式链便款款的、含情脉脉的降临在我们面前.这个均值不等式链神通巨大,可以解决很多很多的由定值求最值问题.
(1)填空写出补充完整的该均值不等式链;
(2)如果定义:当时,为间的“缝隙”.记与间的“缝隙”为,与间的缝隙为,请问、谁大?给出你的结论并证明.
已知数列的前项和为,,是等差数列,且.
(1)求数列和的通项公式;
(2)若,求数列的前项和.
全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续天监测空气质量指数(),数据统计如下:
空气质量指数() | 0-50 | 51-100 | 101-150 | 151-200 | 201-250 |
空气质量等级 | 空气优 | 空气良 | 轻度污染 | 中度污染 | 重度污染 |
天数 | 20 | 40 | 10 | 5 |
(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;
(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件“两天空气都为良”发生的概率.
已知,且.
(1)求的最大值;(2)求的最小值.
设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是 _________ .
设:实数满足,其中,:实数满足,若是的必要不充分条件,则实数的取值范围是________;