在直角坐标系中,曲线的参数方程为,若曲线与曲线关于直线对称.
(1)求曲线的直角坐标方程;
(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.
如图,已知椭圆的离心率为,右准线方程为,、分别是椭圆的左、右顶点,过右焦点且斜率为的直线与椭圆相交于,两点.
(1)求椭圆的标准方程.
(2)记、的面积分别为、,若,求的值;
(3)设线段的中点为,直线与右准线相交于点,记直线、、的斜率分别为、、,求的值.
已知函数在点处的切线方程为.
(1)求,的值;
(2)若恒成立,求实数的取值范围.
如图,已知三棱柱的侧棱与底面垂直,,,是的中点,是的中点,是中点,点在上.
(1)求证:;
(2)求三棱锥的体积.
某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔一小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据茎叶如图所示.
(Ⅰ)根据样本数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对稳定;
(Ⅱ)若从乙车间件样品中随机抽取两件,求所抽取两件样品重量之差不超过克的概率.
已知函数的最小正周期为.
(1)求的值;
(2)求函数在区间上的取值范围.