满分5 > 高中数学试题 >

在中,角,,所对的边分别是,,,且. (1)求的值; (2)若,求的取值范围.

中,角所对的边分别是,且.

(1)的值;

(2),求的取值范围.

 

(1);(2) 【解析】 (1)利用正弦定理边化角,结合两角和差正弦公式可整理求得,进而求得和,代入求得结果; (2)利用正弦定理可将表示为,利用两角和差正弦公式、辅助角公式将其整理为,根据正弦型函数值域的求解方法,结合的范围可求得结果. (1)由正弦定理可得: 即 (2)由(1)知: , ,即的取值范围为
复制答案
考点分析:
相关试题推荐

已知是递增的等比数列,,且.

1)求数列的通项公式;

2)设,求数列的前项和.

 

查看答案

已知函数是定义在上的奇函数,当时,.

1)当时,求的解析式;

2)求不等式的解集.

 

查看答案

设等差数列的前项和为,若,则的最大值是______.

 

查看答案

函数的图像在点处的切线垂直于直线,则_______.

 

查看答案

满足约束条件,则的最小值为___________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.