复数( )
A. B. C. D.
已知函数
(1)当时,求不等式的解集;
(2)若,且对任意,恒成立,求的最小值.
在平面直角坐标系中,曲线的参数方程为(为参数),已知点,点是曲线上任意一点,点为的中点,以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)求点的轨迹的极坐标方程;
(2)已知直线:与曲线交于两点,若,求的值.
已知函数
(1)当时,取得极值,求的值并判断是极大值点还是极小值点;
(2)当函数有两个极值点且时,总有成立,求的取值范围.
已知椭圆的离心率为,M是椭圆C的上顶点,,F2是椭圆C的焦点,的周长是6.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过动点P(1,t)作直线交椭圆C于A,B两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.
已知四棱锥中,底面为菱形,,平面,、分别是、上的中点,直线与平面所成角的正弦值为,点在上移动.
(Ⅰ)证明:无论点在上如何移动,都有平面平面;
(Ⅱ)求点恰为的中点时,二面角的余弦值.