集合的非空真子集个数是( )
A. B. C. D.
对于无穷数列{}与{},记A={|=,},B={|=,},若同时满足条件:①{},{}均单调递增;②且,则称{}与{}是无穷互补数列.
(1)若=,=,判断{}与{}是否为无穷互补数列,并说明理由;
(2)若=且{}与{}是无穷互补数列,求数列{}的前16项的和;
(3)若{}与{}是无穷互补数列,{}为等差数列且=36,求{}与{}得通项公式.
已知函数,
(1)当时,求的单调区间;
(2)当,讨论的零点个数;
设椭圆的左、右焦点分别为、,上顶点为,在轴负半轴上有一点,满足为线段的中点,且.
(1)求椭圆的离心率;
(2)若过、、三点的圆与直线相切,求椭圆的方程;
(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于、两点,在轴上是否存在点使得以、为邻边的平行四边形是菱形?如果存在,求出的取值范围,若不存在,请说明理由.
(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.
(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C所成角的正弦值。
某超市从年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取个,并按、、、、分组,得到频率分布直方图如图,假设甲、乙两种酸奶独立销售且日销售量相互独立.
(1)写出频率分布直方图甲中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为、,试比较与的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于箱且另一个不高于箱的概率;
(3)设表示在未来天内甲种酸奶的日销售量不高于箱的天数,以日留住量落入各组的频率为概率,求的分布列和数学期望.