若椭圆,则该椭圆上的点到两焦点距离的最大,最小值分别为( )
A.3,1 B. C.2,1 D.
已知集合,,则( )
A. B. C. D.
如图,已知点F为抛物线C:()的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l的倾斜角为45°时,.
(1)求抛物线C的方程.
(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.
已知椭圆的离心率为,且过点.
(1)求椭圆的标准方程;
(2)若过点的直线交椭圆于不同的两点,,求(为坐标原点)面积的最大值.
在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成,,,,5组,绘制成如图所示的频率分布直方图.
(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);
(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在的概率.
已知数列的前项和为,,.
(1)求数列的通项公式;
(2)设,求数列的前项和.