已知椭圆()的左、右焦点分别是,,点为的上顶点,点在上,,且.
(1)求的方程;
(2)已知过原点的直线与椭圆交于,两点,垂直于的直线过且与椭圆交于,两点,若,求.
已知函数.
(1)求的单调区间;
(2)若函数在上只有一个零点,求的取值范围.
如图,在三棱柱中,底面是边长为4的等边三角形,,为的中点.
(1)证明:平面.
(2)若是等边三角形,求二面角的正弦值.
某地区实施“光盘行动”以后,某自助啤酒吧也制定了自己的行动计划,进店的每一位客人需预交元,啤酒根据需要自己用量杯量取,结账时,根据每桌剩余酒量,按一定倍率收费(如下表),每桌剩余酒量不足升的,按升计算(如剩余升,记为剩余升).例如:结账时,某桌剩余酒量恰好为升,则该桌的每位客人还应付元.统计表明饮酒量与人数有很强的线性相关关系,下面是随机采集的组数据(其中表示饮酒人数,(升)表示饮酒量):,,,,.
剩余酒量(单位:升) | 升以上(含升) | ||||
结账时的倍率 |
(1)求由这组数据得到的关于的回归直线方程;
(2)小王约了位朋友坐在一桌饮酒,小王及朋友用量杯共量取了升啤酒,这时,酒吧服务生对小王说,根据他的经验,小王和朋友量取的啤酒可能喝不完,可以考虑再邀请位或位朋友一起来饮酒,会更划算.试向小王是否该接受服务生的建议?
参考数据:回归直线的方程是,其中,.
为了适应新高考改革,某校组织了一次新高考质量测评(总分100分),在成绩统计分析中,抽取12名学生的成绩以茎叶图形式表示如图,学校规定测试成绩低于87分的为“未达标”,分数不低于87分的为“达标”.
(1)求这组数据的众数和平均数;
(2)在这12名学生中从测试成绩介于80~90之间的学生中任选2人,求至少有1人“达标”的概率.
已知函数在上单调递减,关于的方程的两根都大于1.
(1)当时,是真命题,求的取值范围;
(2)若为真命题是为真命题的充分不必要条件,求的取值范围.