如图所示,是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸和上分别修建观光长廊和AC,其中是宽长廊,造价是元/米,是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.
(1) 若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么和的长度分别为多少米?
(2) 在(1)的条件下,建直线通道还需要多少钱?
已知直线及点P(3,4),问:
(1)直线l是否经过某个定点?若经过,求该定点的坐标;若不经过,说明理由;
(2)当点P到直线l的距离最大时,求直线l的方程.
在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足( ).
A. B. C. D.
已知点与点在直线的两侧,给出以下结论:①;②当时,有最小值,无最大值;③;④当且时,的取值范围是,
正确的个数是( )
A.1 B.2 C.3 D.4
如图,,圆M与AB、AC分别相切于点D、E,,点P是圆M及其内部任意一点,且,则的取值范围是( )
A.
B.
C.
D.
如图,在同一平面内,点位于两平行直线、同侧,且到,的距离分别为,,点,分别在,上,,则的最大值为( )
A.15 B.12 C.10 D.9