已知集合,,则______.
已知函数.
(Ⅰ)当时,解不等式;
(Ⅱ)当时,恒成立,求的取值范围.
在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。
(1)写出直线l的普通方程和曲线C的直角坐标方程:
(2)若成等比数列,求a的值。
已知函数.
(1)当时,求函数的极值;
(2)若函数没有零点,求实数的取值范围.
过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.
在四棱锥中,,,,,分别为的中点,.
(1)求证:平面平面;
(2)设,若平面与平面所成锐二面角,求的取值范围.