已知集合,,则A∩B=( )
A. B.
C. D.
( )
A. B. C. D.
已知函数,其中为常数.
(1)当时,解不等式;
(2)已知是以2为周期的偶函数,且当时,有.若,且,求函数的反函数;
(3)若在上存在个不同的点,,使得,求实数的取值范围.
已知数列各项均为正数,为其前项的和,且成等差数列.
(1)写出、、的值,并猜想数列的通项公式;
(2)证明(1)中的猜想;
(3)设,为数列的前项和.若对于任意,都有,求实数的值.
如图,某城市有一矩形街心广场,如图.其中百米,百米.现将在其内部挖掘一个三角形水池种植荷花,其中点在边上,点在边上,要求.
(1)若百米,判断是否符合要求,并说明理由;
(2)设,写出面积的关于的表达式,并求的最小值.
在复平面内复数、所对应的点为、,为坐标原点,是虚数单位.
(1),,计算与;
(2)设,(),求证:,并指出向量、满足什么条件时该不等式取等号.