如图1,在等腰梯形ABCD中,,,,E为AD的中点.现分别沿BE,EC将△ABE 和△ECD折起,使得平面ABE⊥平面BCE,平面ECD⊥平面BCE,连接AD,如图2.
(1)若在平面BCE内存在点G,使得GD∥平面ABE,请问点G的轨迹是什么图形?并说明理由.
(2)求平面AED与平面BCE所成锐二面角的余弦值.
某市一所高中为备战即将举行的全市羽毛球比赛,学校决定组织甲、乙两队进行羽毛球对抗赛实战训练.每队四名运动员,并统计了以往多次比赛成绩,按由高到低进行排序分别为第一名、第二名、第三名、第四名.比赛规则为甲、乙两队同名次的运动员进行对抗,每场对抗赛都互不影响,当甲、乙两队的四名队员都进行一次对抗赛后称为一个轮次.按以往多次比赛统计的结果,甲、乙两队同名次进行对抗时,甲队队员获胜的概率分别为,,,.
(1)进行一个轮次对抗赛后一共有多少种对抗结果?
(2)计分规则为每次对抗赛获胜一方所在的队得1分,失败一方所在的队得0分,设进行一个轮次对抗赛后甲队所得分数为X,求X的分布列及数学期望.
在△ABC中,内角A,B,C所对的边分别为a,b,c.已知.
(1)求cosA的值;
(2)若,求a的最小值.
在四面体ABCD中,,,,二面角D-AC-B的大小为120°,则此四面体的外接球的表面积是________.
已知等比数列{an},an>0,n∈N*,且2a1+3a2=33,,则a2020=_____
在产品质量检测中,已知某产品的一项质量指标X~N(100,100),且的产品数量为5436件,请估计该批次检测的产品数量是________件.
参考数据,若,则,,.