已知函数,a为实数.
(1)当时,讨论的零点个数;
(2)若,都有,求实数a的取值范围.
已知椭圆的长轴为,分别为椭圆C的左、右顶点,P是椭圆C上异于的动点,且面积的最大值为.
(1)求椭圆C的方程;
(2)过点的直线l交椭圆C于两点,D为椭圆上一点,O为坐标原点,且满足,其中,求直线l的斜率k的取值范围.
如图,在三棱锥中,,,O为的中点.
(1)证明:;
(2)若点M在线段上,且,求三棱锥的体积.
某县应国家号召,积极开展了建设新农村活动,实行以奖代补,并组织有关部门围绕新农村建设中的三个方面(新设施,新环境,新风尚)对各个村进行综合评分,高分(大于88分)的村先给予5万元的基础奖励,然后比88分每高一分,奖励增加5千元,低分(小于等于75分)的村给予通报,取消5万元的基础奖励,且比75分每低1分,还要扣款1万元,并要求重新整改建设,分数在之间的只享受5万元的基础奖励,下面是甲、乙两个乡镇各10个村的得分数据(单位:分):
甲:62,74,86,68,97,75,88,98,76,99;
乙:71,81,72,86,91,77,85,78,83,84.
(1)根据上述数据完成如图的茎叶图,并通过茎叶图比较两个乡镇各10个村的得分的平均值及分散程度;(不要求计算具体的数值,只给出结论即可)
(2)为继续做好新农村的建设工作,某部门决定在这两个乡镇中任选两个低分村进行帮扶重建,求抽取的两个村中,两个乡镇中各有一个村的概率;
(3)从获取奖励的角度看,甲、乙两个乡镇哪个获取的奖励多?(需写出计算过程)
已知数列满足,,且,,
(1)求数列的通项公式;
(2)求数列的前n项和.
已知抛物线,焦点到准线的距离为1,若抛物线上存在关于直线对称的相异两点,,则线段的中点坐标为_________.