满分5 > 高中数学试题 >

2019年7曰1日至3日,世界新能源汽车大会在海南博鳌召开,大会着眼于全球汽车产...

2019年7曰1日至3日,世界新能源汽车大会在海南博鳌召开,大会着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如下的频率分布直方图:

(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).

(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50.用样本平均数作为的近似值,用样本标准差作为的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.

参考数据:若随机变量ξ服从正态分布,则.

(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车车向前移动一次,若掷出正面,遥控车向前移动一格(从),若掷出反面,遥控车向前移动两格(从),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,设遥控车移到第n格的概率为,试说明是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.

 

(1)(千米)(2)(3)说明详见解析,此方案能够成功吸引顾客购买该款新能源汽车 【解析】 (1)利用频率分布直方图的平均数的计算方法即可得出. (2)由,.利用正态分布的对称性可得. (3)遥控车开始在第0 格为必然事件,.第一次掷硬币出现正面,遥控车移到第一格,其概率为,即.遥控车移到第格的情况是下面两种,而且只有两种:①遥控车先到第格,又掷出反面,其概率为.②遥控车先到第格,又掷出正面,其概率为.可得:.变形为.即可证明时,数列是等比数列,首项为,公比为的等比数列.利用,及其求和公式即可得出.可得获胜的概率,失败的概率.进而得出结论. 【解析】 (1) (千米). (2)由,. . (3)遥控车开始在第0 格为必然事件,.第一次掷硬币出现正面,遥控车移到第一格,其概率为,即. 遥控车移到第格的情况是下面两种,而且只有两种: ①遥控车先到第格,又掷出反面,其概率为. ②遥控车先到第格,又掷出正面,其概率为. . . 时,数列是等比数列,首项为,公比为的等比数列. ,,,,. ,1,,. 获胜的概率, 失败的概率. . 获胜的概率大. 此方案能成功吸引顾客购买该款新能源汽车.
复制答案
考点分析:
相关试题推荐

已知函数.

(1)求曲线在点处的切线方程;

(2)证明:在区间上有且仅有个零点.

 

查看答案

椭圆的左焦点为,短轴长为,右顶点为,上顶点为的面积为.

(1)求椭圆的标准方程;

(2)过作直线与椭圆交于另一个点,连接并延长交椭圆于点,当面积最大时,求直线的方程.

 

查看答案

如图,四棱锥为等边三角形,平面平面中点.

(1)求证:平面

(2)求二面角的余弦值.

 

查看答案

已知锐角三角形的内角的对边分别为,其外接圆半径满足.

1)求的大小;

2)已知的面积,求的取值范围.

 

查看答案

三棱锥中,点三点的距离均为,过点平面,垂足为,连接,此时,则三棱锥外接球的体积为______.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.