已知函数
(1)求不等式的解集;
(2)设表示不大于的最大整数,若对恒成立,求的取值范围.
在直角坐标系中,直线的参数方程为,(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)已知点的极坐标为,与曲线交于两点,求
设椭圆的离心率是,直线被椭圆C截得的弦长为.
(1)求椭圆C的方程;
(2)已知点,斜率为的直线l与椭圆C交于不同的两点A,B,当的面积最大时,求直线l的方程.
已知函数.
(1)若,求在上的最大值;
(2)当时,有两个极值点、,证明:.
某高校健康社团为调查本校大学生每周运动的时长,随机选取了80名学生,调查他们每周运动的总时长(单位:小时),按照共6组进行统计,得到男生、女生每周运动的时长的统计如下(表1、2),规定每周运动15小时以上(含15小时)的称为“运动合格者”,其中每周运动25小时以上(含25小时)的称为“运动达人”.
表1:男生
时长 | ||||||
人数 | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
时长 | ||||||
人数 | 0 | 4 | 12 | 12 | 8 | 4 |
(1)从每周运动时长不小于20小时的男生中随机选取2人,求选到“运动达人”的概率;
(2)根据题目条件,完成下面列联表,并判断能否有99%的把握认为本校大学生是否为“运动合格者”与性别有关.
| 每周运动的时长小于15小时 | 每周运动的时长不小于15小时 | 总计 |
男生 |
|
|
|
女生 |
|
|
|
总计 |
|
|
|
参考公式:,其中.
参考数据:
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
如图,在三棱柱中,是棱的中点.
(1)证明:平面.
(2)若是棱上的任意一点,且三棱柱的体积为,求三棱锥的体积.