满分5 > 高中数学试题 >

已知函数 (1)判断在上的单调性(不需要证明); (2)若在上为单调函数,求的取...

已知函数

1)判断上的单调性(不需要证明);

2)若上为单调函数,求的取值范围.

 

(1)在上为减函数(2) 【解析】 (1)根据复合函数单调性的判断原则,同增异减,可得答案; (2)分段函数为单调函数,则每一段具有相同的单调性,可得在上也为减函数,另外根据函数左边一段的最小值不能小于右边一段的最大值,列不等式求解. 【解析】 (1)在上为减函数,在为增函数, 在上为减函数, 在上为减函数; (2)由(1)知,在上为减函数, 则在上也为减函数, 所以,且, 解得.
复制答案
考点分析:
相关试题推荐

1)求值

2)求值.

 

查看答案

设集合.

1)求

2)若,求

3)若,求的取值范围.

 

查看答案

若函数(,且)有最大值,且最大值不小于,则的取值范围为______.

 

查看答案

已知奇函数的定义域为,且在上单调递减,则不等式的解集为__________.

 

查看答案

”“”“”“填空:0____________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.