满分5 > 高中数学试题 >

给出下列说法: ①集合与集合是相等集合; ②若函数的定义域为,则函数的定义域为;...

给出下列说法:

①集合与集合是相等集合;

②若函数的定义域为,则函数的定义域为

③函数的单调减区间是

④不存在实数m,使为奇函数;

⑤若,且,则.

其中正确说法的序号是(   

A.①③④ B.②④⑤ C.②③⑤ D.①④⑤

 

D 【解析】 对①,分析集合表示的范围即可. 对②,根据定义域的定义求解判断即可. 对③,根据反比例函数的单调区间判定即可. 对④,根据奇函数的性质判定即可. 对⑤,根据递推公式求解的值再求和即可. 对①, 表示奇数的集合, 也表示奇数的集合,故成立.故①正确. 对②, 若函数的定义域为,则函数的定义域为解得定义域为,故②错误. 对③, 函数的单调减区间是和,不能写成.故③错误. 对④,因为故不存在实数m,使为奇函数,故④正确. 对⑤,因为,且,故, 即.故. 故⑤正确. 综上, ①④⑤正确. 故选:D
复制答案
考点分析:
相关试题推荐

定义在的函数满足下列两个条件:①任意的,都有;②任意的m,当,都有,则不等式的解集是(   

A. B. C. D.

 

查看答案

上的偶函数,且在上为增函数,若,且,则()

A.

B.

C.

D.无法比较的大小

 

查看答案

已知,且的值为( )

A.4 B.0 C. D.

 

查看答案

已知奇函数在区间上是增函数,且最大值为,最小值为,则在区间的最大值、最小值分别是(   )

A. B. C. D.不确定

 

查看答案

函数在区间上单调递减,那么实数a的取值范围(   

A. B. C. D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.