给出下列命题:①零向量的长度为零,方向是任意的;②若都是单位向量,则;③向量与相等,则所有正确命题的序号是( )
A.① B.③ C.①③ D.①②
的值为( )
A. B. C. D.
已知为上的偶函数,当时,.
(1)当时,求的解析式;
(2)当时,试比较与的大小;
(3)求最小的整数,使得存在实数,对任意的,都有.
对于定义在区间D上的函数:若存在闭区间和常数e,使得对任意,都有,且对任意,当时,恒成立,则称函数为区间D上的“平底型”函数.
(1)判断函数和是否为R上的“平底型”函数?并说明理由;
(2)若函数是区间上的“平底型”函数,求m和n的值.
某辆汽车以千米小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求时,每小时的油耗(所需要的汽油量)为升,其中为常数,且.
(1)若汽车以120千米小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求的取值范围;
(2)求该汽车行驶100千米的油耗的最小值.
已知且满足.
(1)求的值;
(2)的值.