在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴的建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程;
(2)若点与点分别为曲线动点,求的最小值,并求此时的点坐标.
已知函数(为自然对数的底数)在点的切线方程为.
(1)求实数的值;
(2)若关于的不等式对于任意恒成立,求整数的最大值.
有一种叫“对对碰”的游戏,游戏规则如下:一轮比赛中,甲乙两人依次轮流抛一枚质地均匀的硬币,甲先抛,每人抛3次,得分规则如下:甲第一次抛得分,再由乙第一次抛,若出现朝上的情况与甲第一次抛的朝上的情况一样,则本次得2分,否则得1分;再甲第二次抛,若出现朝上的情况与乙第一次抛的朝上的情况一样,则本次得分是乙第一次得分的基础上加1分,否则得1分;再乙第二次抛,若出现朝上的情况与甲第二次抛的朝上的情况一样,则本次得分是甲第二次得分的基础上加1分,否则得1分;按此规则,直到游戏结束.记甲乙累计得分分别为.
(1)一轮游戏后,求的概率;
(2)一轮游戏后,经计算得乙的数学期望,要使得甲的数学期望,求的最小值.
已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)已知点是椭圆上的点,是椭圆上位于直线两侧的动点,当运动时,满足,试问直线的斜率是否为定值?请说明理由.
如图,在平行四边形中,,平面平面,且.
(1)在线段上是否存在一点,使平面,证明你的结论;
(2)求二面角的余弦值.
数列满足,且,
(1)求数列的通项公式;
(2)记,求数列的前项和.