满分5 > 高中数学试题 >

已知函数(),不等式的解集为. (1)求的值; (2)若,,,且,求的最大值.

已知函数),不等式的解集为.

1)求的值;

2)若,且,求的最大值.

 

(1)(2)32 【解析】 利用绝对值不等式的解法求出不等式的解集,得到关于的方程,求出的值即可; 由知可得,,利用三个正数的基本不等式,构造和是定值即可求出的最大值. (1)∵, , 所以不等式的解集为, 即为不等式的解集为, ∴的解集为, 即不等式的解集为, 化简可得,不等式的解集为, 所以,即. (2)∵,∴. 又∵,,, ∴ , 当且仅当,等号成立, 即,,时,等号成立, ∴的最大值为32.
复制答案
考点分析:
相关试题推荐

在直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.

1)求曲线的直角坐标方程;

2)设曲线与直线交于点,点的坐标为(31),求.

 

查看答案

已知函数为自然对数的底数).

1)求函数的零点,以及曲线处的切线方程;

2)设方程)有两个实数根,求证:.

 

查看答案

设椭圆)的左右顶点为,上下顶点为,菱形的内切圆的半径为,椭圆的离心率为.

1)求椭圆的方程;

2)设是椭圆上关于原点对称的两点,椭圆上一点满足,试判断直线与圆的位置关系,并证明你的结论.

 

查看答案

如图,已知三棱柱中,平面平面.

1)证明:

2)设,求二面角的余弦值.

 

查看答案

大湖名城,创新高地的合肥,历史文化积淀深厚,民俗和人文景观丰富,科教资源众多,自然风光秀美,成为中小学生研学游的理想之地.为了将来更好地推进研学游项目,某旅游学校一位实习生,在某旅行社实习期间,把研学游项目分为科技体验游、民俗人文游、自然风光游三种类型,并在前几年该旅行社接待的全省高一学生研学游学校中,随机抽取了100所学校,统计如下:

研学游类型

科技体验游

民俗人文游

自然风光游

学校数

40

40

20

 

该实习生在明年省内有意向组织高一研学游学校中,随机抽取了3所学校,并以统计的频率代替学校选择研学游类型的概率(假设每所学校在选择研学游类型时仅选择其中一类,且不受其他学校选择结果的影响):

1)若这3所学校选择的研学游类型是科技体验游自然风光游,求这两种类型都有学校选择的概率;

2)设这3所学校中选择科技体验游学校数为随机变量X,求X的分布列与数学期望.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.