满分5 > 高中数学试题 >

(2017新课标全国Ⅲ理科)如图,四面体ABCD中,△ABC是正三角形,△ACD...

(2017新课标全国Ⅲ理科)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBDAB=BD.

(1)证明:平面ACD⊥平面ABC

(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.

 

(1)见解析;(2). 【解析】 试题(1)利用题意证得二面角的平面角为90°,则可得到面面垂直; (2)利用题意求得两个半平面的法向量,然后利用二面角的夹角公式可求得二面角D–AE–C的余弦值为. 试题解析:(1)由题设可得,,从而. 又是直角三角形,所以. 取AC的中点O,连接DO,BO,则DO⊥AC,DO=AO. 又由于是正三角形,故. 所以为二面角的平面角. 在中,. 又,所以, 故. 所以平面ACD⊥平面ABC. (2)由题设及(1)知,两两垂直,以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.则. 由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得. 故. 设是平面DAE的法向量,则即 可取. 设是平面AEC的法向量,则同理可取. 则. 所以二面角D-AE-C的余弦值为.
复制答案
考点分析:
相关试题推荐

如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

(Ⅰ)证明:AB1⊥平面A1B1C1

(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.

 

查看答案

    如图,在平行六面体ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求异面直线A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

 

查看答案

如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点PQ分别为A1B1BC的中点.

(1)求异面直线BPAC1所成角的余弦值;

(2)求直线CC1与平面AQC1所成角的正弦值.

 

查看答案

如图,已知三棱柱,平面平面,分别是的中点.

(1)证明:

(2)求直线与平面所成角的余弦值.

 

查看答案

在锐角三角形ABC中,.

1)求证:

2)求的最小值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.