满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=...

如图,在四棱锥PABCD中,PA⊥平面ABCDABADADBCAPABAD=1.

(1)若直线PBCD所成角的大小为BC的长;

(2)求二面角BPDA的余弦值.

 

(1) BC的长为2;(2)二面角的余弦值为. 【解析】 试题(1)以为单位正交基底,建立空间直角坐标系.设,则,利用空间向量夹角余弦公式列方程求解即可;(2)分别求出平面PBD与平面PAD的一个法向量,根据空间向量夹角余弦公式,可得结果. 试题解析:【解析】 (1)以{ }为单位正交基底,建立如图所示的空间直角坐标系A-xyz.因为AP=AB=AD=1,所以A(0,0,0),B(1,0,0),D(0,1,0),P(0,0,1).设C(1,y,0),则=(1,0,-1),=(-1,1-y,0). 因为直线PB与CD所成角大小为, 所以|cos<,>|=| |= , 即,解得y=2或y=0(舍), 所以C(1,2,0),所以BC的长为2. (2)设平面PBD的一个法向量为=(x,y,z). 因为=(1,0,-1),=(0,1,-1), 则即 令x=1,则y=1,z=1,所以=(1,1,1). 因为平面PAD的一个法向量为=(1,0,0), 所以cos<,>= 所以,由图可知二面角B-PD-A的余弦值为.  
复制答案
考点分析:
相关试题推荐

如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCDAD1PAAB ,点E是棱PB的中点.

1)求异面直线ECPD所成角的余弦值;

2)求二面角B-EC-D的余弦值.

 

查看答案

如图,在四棱锥中,已知平面,且四边形为直角梯形,.

(1)求平面与平面所成锐二面角的余弦值;

(2)点是线段上的动点,当直线所成的角最小时,求线段的长.

 

查看答案

(2017新课标全国Ⅲ理科)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBDAB=BD.

(1)证明:平面ACD⊥平面ABC

(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.

 

查看答案

如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

(Ⅰ)证明:AB1⊥平面A1B1C1

(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.

 

查看答案

    如图,在平行六面体ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求异面直线A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.