某地实行垃圾分类后,政府决定为三个小区建造一座垃圾处理站M,集中处理三个小区的湿垃圾.已知在的正西方向,在的北偏东方向,在的北偏西方向,且在的北偏西方向,小区与相距与相距.
(1)求垃圾处理站与小区之间的距离;
(2)假设有大、小两种运输车,车在往返各小区、处理站之间都是直线行驶,一辆大车的行车费用为每公里元,一辆小车的行车费用为每公里元(其中为满足是内的正整数) .现有两种运输湿垃圾的方案:
方案1:只用一辆大车运输,从出发,依次经再由返回到;
方案2:先用两辆小车分别从运送到,然后并各自返回到,一辆大车从直接到再返回到.试比较哪种方案更合算?请说明理由. 结果精确到小数点后两位
已知函数
(1)若为奇函数,求的值;
(2)若在上恒成立,求实数的取值范围.
如图,在一个圆锥内作一个内接圆柱(圆柱的下底面在圆锥的底面上,上底面的圆在圆锥的侧面上),圆锥的母线长为是底面的两条直径,且,圆柱与圆锥的公共点恰好为其所在母线的中点,点是底面的圆心.
(1)求圆柱的侧面积;
(2)求异面直线和所成的角的大小.
已知各项为正数的非常数数列满足 ,有以下两个结论:①若,则数列是递增数列;②数列奇数项是递增数列则( )
A.①对②错 B.①错②对 C.①②均错误 D.①②均正确
在正四面体中,点为所在平面上的动点,若与所成角为定值, 则动点的轨迹是( )
A.圆 B.椭圆 C.双曲线 D.抛物线
命题“若,则”是真命题,实数的取值范围是( )
A. B. C. D.