已知,则( )
A. B. C. D.
某商场在售的三类食品共200种的分布情况如图所示,质检部门要从中抽取一个容量为40的样本进行质量检测,则抽取的植物油类食品的种数是( )
A.8 B.12 C.24 D.30
已知集合,,则( )
A. B. C. D.
已知数列满足
(1)当时,写出所有可能的值;
(2)当时,若且对任意恒成立,求数列的通项公式;
(3)记数列的前项和为,若分别构成等差数列,求.
已知抛物线和圆,抛物线的焦点为.
(1)求的圆心到的准线的距离;
(2)若点在抛物线上,且满足, 过点作圆的两条切线,记切点为,求四边形的面积的取值范围;
(3)如图,若直线与抛物线和圆依次交于四点,证明:的充要条件是“直线的方程为”
某地实行垃圾分类后,政府决定为三个小区建造一座垃圾处理站M,集中处理三个小区的湿垃圾.已知在的正西方向,在的北偏东方向,在的北偏西方向,且在的北偏西方向,小区与相距与相距.
(1)求垃圾处理站与小区之间的距离;
(2)假设有大、小两种运输车,车在往返各小区、处理站之间都是直线行驶,一辆大车的行车费用为每公里元,一辆小车的行车费用为每公里元(其中为满足是内的正整数) .现有两种运输湿垃圾的方案:
方案1:只用一辆大车运输,从出发,依次经再由返回到;
方案2:先用两辆小车分别从运送到,然后并各自返回到,一辆大车从直接到再返回到.试比较哪种方案更合算?请说明理由. 结果精确到小数点后两位