某公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:
间隔时间x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值都不超过1,则称所求方程是“恰当回归方程”.
(1)从这6组数据中随机选取4组数据,求剩下的2组数据的间隔时间相邻的概率;
(2)若选取的是中间4组数据,求y关于x的线性回归方程,并判断此方程是否是“恰当回归方程”.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.
如图,把长为6,宽为3的矩形折成正三棱柱,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱、的交点记为.
(1)在三棱柱中,若过三点做一平面,求截得的几何体的表面积;
(2)求三棱锥的体积.
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:.
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均数与中位数.
已知的三个顶点坐标分别为.
(1)求边上的中线所在直线的一般式方程;
(2)求边上的高所在直线的一般式方程.
如图所示,在长方体中,点E是棱上的一个动点,若平面交棱于点F,给出下列命题:
①四棱锥的体积恒为定值;
②对于棱上任意一点E,在棱上均有相应的点G,使得平面;
③O为底面对角线和的交点,在棱上存在点H,使平面;
④存在唯一的点E,使得截面四边形的周长取得最小值.
其中为真命题的是____________________.(填写所有正确答案的序号)
一条光线从点射出,经x轴反射,其反射光线所在直线与圆相切,则反射光线所在的直线方程为____.