已知函数.
(1)当时,求不等式的解集;
(2)证明:.
在直角坐标系中,曲线的参数方程为(为参数).以原点为极点,轴的非负半轴为极轴中,两个坐标系取相等的长度单位,圆的方程为,射线的极坐标方程为.
(1)求曲线和的极坐标方程;
(2)当时,若射线与曲线和圆分别交于异于点的、两点,且,求的面积.
设函数.
(1)若当时,取得极值,求的值,并求的单调区间.
(2)若存在两个极值点,求的取值范围,并证明:.
已知为坐标原点,椭圆:的焦距为,直线截圆:与椭圆所得的弦长之比为,椭圆与轴正半轴的交点分别为.
(1)求椭圆的标准方程;
(2)设点(且)为椭圆上一点,点关于轴的对称点为,直线,分别交轴于点,.试判断是否为定值?若是求出该定值,若不是定值,请说明理由.
如图,在四棱锥中,底面是边长为的正方形,平面平面,,为中点,且.
(1)求证:;
(2)求与平面所成角的正弦值.
蔬菜批发市场销售某种蔬菜,在一个销售周期内,每售出1吨该蔬菜获利500元,未售出的蔬菜低价处理,每吨亏损100元.统计该蔬菜以往100个销售周期的市场需求量,绘制下图所示频率分布直方图.
(Ⅰ)求的值,并求100个销售周期的平均市场需求量(以各组的区间中点值代表该组的数值);
(Ⅱ)若经销商在下个销售周期购进了190吨该蔬菜,设为该销售周期的利润(单位:元),为该销售周期的市场需求量(单位:吨).求与的函数解析式,并估计销售的利润不少于86000元的概率.