如图,多面体是正三棱柱沿平面切除一部分所得,,点D为的中点.
(1)求证:平面;
(2)求点到平面的距离.
已知四面体有五条棱长为3,且外接球半径为2.动点P在四面体的内部或表面,P到四个面的距离之和记为s.已知动点P在,两处时,s分别取得最小值和最大值,则线段长度的最小值为______.
已知变量x、y满足约束条件,在实数x、y中插入7个实数,使这9个数构成等差数列的前9项,则、,则数列的前13项和的最大值为______.
我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图(1),函数的图象与x轴围成一个封闭区域A(阴影部分),将区域A(阴影部分)沿z轴的正方向上移6个单位,得到一几何体.现有一个与之等高的底面为椭圆的柱体如图(2)所示,其底面积与区域A(阴影部分)的面积相等,则此柱体的体积为______.
过抛物线C:上的一点M(非顶点)作C的切线与x轴、y轴分别交于A、B两点,则______.
如图所示,将方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻两个小方格的颜色不同,称他们的公共边为“分割边”,则分割边条数的最小值为( )
A.33 B.56 C.64 D.78