已知函数
.
(1)当
且
时,求函数
的单调区间;
(2)当
时,若函数
的两个极值点分别为
、
,证明
.
高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左或向右滚下,最后掉入高尔顿板下方的某一球槽内.如图所示的小木块中,上面7层为高尔顿板,最下面一层为改造的高尔顿板,小球从通道口落下,第一次与第2层中间的小木块碰撞,以
的概率向左或向右滚下,依次经过6次与小木块碰撞,最后掉入编号为1,2…,7的球槽内.例如小球要掉入3号球槽,则在前5次碰撞中有2次向右3次向左滚到第6层的第3个空隙处,再以
的概率向左滚下,或在前5次碰撞中有1次向右4次向左滚到第6层的第2个空隙处,再以
的概率向右滚下.

(1)若进行一次高尔顿板试验,求小球落入第7层第6个空隙处的概率;
(2)小明同学在研究了高尔顿板后,利用该图中的高尔顿板来到社团文化节上进行盈利性“抽奖”活动,8元可以玩一次高尔顿板游戏,小球掉入X号球槽得到的奖金为
元,其中
.
(i)求X的分布列:
(ii)高尔顿板游戏火爆进行,很多同学参加了游戏,你觉得小明同学能盈利吗?
定义:如果一个数列从第2项起,每一项与它前一项的差都大于或等于2,则称这个数列为“D数列”.
(1)若首项为1的等差数列
的每一项均为正整数,且数列
为“D数列”,其前n项和
满足
(
),求数列
的通项公式;
(2)已知等比数列
的每一项均为正整数,且数列
为“D数列”,
,设
(
),试判断数列
是否为“D数列”,并说明理由.
已知椭圆
(
)的右焦点为F,左顶点为A,离心率
,且经过圆O:
的圆心.过点F作不与坐标轴重合的直线
和该椭圆交于M、N两点,且直线
、
分别与直线
交于P、Q两点.
(1)求椭圆的方程;
(2)证明:
为直角三角形.
如图,多面体
是正三棱柱
沿平面
切除一部分所得,
,点D为
的中点.

(1)求证:
平面
;
(2)求点
到平面
的距离.
已知四面体有五条棱长为3,且外接球半径为2.动点P在四面体的内部或表面,P到四个面的距离之和记为s.已知动点P在
,
两处时,s分别取得最小值和最大值,则线段
长度的最小值为______.
