设a为实数,函数,
(1)若,求不等式的解集;
(2)是否存在实数a,使得函数在区间上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;
(3)写出函数在R上的零点个数(不必写出过程).
已知以点为圆心的圆C被直线截得的弦长为.
(1)求圆C的标准方程:
(2)求过与圆C相切的直线方程:
(3)若Q是直线上的动点,QR,QS分别切圆C于R,S两点.试问:直线RS是否恒过定点?若是,求出恒过点坐标:若不是,说明理由.
如图,在几何体P﹣ABCD中,平面ABCD⊥平面PAB ,四边形ABCD为矩形,△PAB为正三角形,若AB=2,AD=1,E,F 分别为AC,BP中点.
(1)求证:EF∥平面PCD;
(2)求直线DP与平面ABCD所成角的正弦值.
在中,内角A,B,C所对的边分别为a,b,c,已知,,.
(1)求边c的值;
(2)求的面积
是亚太区域国家与地区加强多边经济联系、交流与合作的重要组织,其宗旨和目标是“相互依存、共同利益,坚持开放性多边贸易体制和减少区域间贸易壁垒.”2017年会议于11月10日至11日在越南岘港举行.某研究机构为了了解各年龄层对会议的关注程度,随机选取了100名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分别为,,,,).
(1)求选取的市民年龄在内的人数;
(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在内的概率.
已知数列为等差数列,是数列的前n项和,且,.
(1)求数列的通项公式;
(2)令,求数列的前n项和.