选修4-4:坐标系与参数方程
在直角坐标系中,曲线(t为参数,且),其中,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线
(Ⅰ)求与交点的直角坐标;
(Ⅱ)若与相交于点A,与相交于点B,求最大值.
已知函数.
(1)求曲线在点处的切线方程;
(2)讨论的单调性;
(3)设,当时,对任意的,存在,使得,求实数 b的取值范围
在平面直角坐标系中,已知,动点满足
(1)求动点的轨迹的方程;
(2)过点的直线与交于两点,记直线的斜率分别为,求证:为定值.
在中,,分别为,的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.
如图1 如图2
(1)证明:平面平面;
(2)若平面平面,求直线与平面所成角的正弦值.
在中,角,,的对边分别为,,,已知.
(1)求的值;
(2)若,,求的面积.
某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
消费次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收费比率 |
该公司注册的会员中没有消费超过次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:
消费次数 | 次 | 次 | 次 | 次 | 次 |
人数 |
假设汽车美容一次,公司成本为元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为元,求的分布列和数学期望.