已知函数,其图象与轴相邻的两个交点的距离为.
(1)求函数的解析式;
(2)若将的图象向左平移个长度单位得到函数的图象恰好经过点,求当取得最小值时,在上的单调区间.
为了了解某省各景区在大众中的熟知度,随机从本省岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家级旅游景区?”,统计结果如下表所示:
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的频率 |
第组 | |||
第组 | |||
第组 | |||
第组 | |||
第组 |
(1)分别求出的值;
(2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;
(3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄段在的概率
假设关于某设备的使用年限x和支出的维修费y(万元)有如下表的统计资料
(1)画出数据的散点图,并判断y与x是否呈线性相关关系
(2)若y与x呈线性相关关系,求线性回归方程的回归系数,
(3)估计使用年限为10年时,维修费用是多少?
参考公式及相关数据:
已知向量=(sin x,cos x),=(cos x,cos x),=(2,1).
(1)若∥,求sin xcos x的值;
(2)若0<x≤,求函数f(x)=·的值域.
(1)任意向轴上这一区间内投掷一个点,则该点落在区间内的概率是多少?
(2)已知向量,,若,分别表示一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率.
已知.
(1)若三点共线,求的关系;
(2)若,求点的坐标.