已知集合,,则的元素的个数为( )
A.3 B.4 C.5 D.6
已知,为两非零有理数列(即对任意的,均为有理数),为一无理数列(即对任意的,为无理数).
(1)已知,并且对任意的恒成立,试求的通项公式.
(2)若为有理数列,试证明:对任意的,恒成立的充要条件为.
(3)已知,,对任意的,恒成立,试计算.
一青蛙从点开始依次水平向右和竖直向上跳动,其落点坐标依次是,(如图所示,坐标以已知条件为准),表示青蛙从点到点所经过的路程.
(1)若点为抛物线()准线上一点,点均在该抛物线上,并且直线经过该抛物线的焦点,证明.
(2)若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,试写出(不需证明);
(3)若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,求的表达式.
设函数
(1)设,,证明:在区间内存在唯一的零点;
(2)设,若对任意,有,求的取值范围.
某海域有两个岛屿,岛在岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发出过鱼群.以所在直线为轴,的垂直平分线为轴建立平面直角坐标系.
(1)求曲线的标准方程;
(2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?
在直三棱柱中,,,且异面直线与所成的角等于,设;
(1)求的值;
(2)求直线到平面的距离.