设函数,.
(1)若曲线在点处的切线与轴平行,求;
(2)当时,函数的图象恒在轴上方,求的最大值.
已知椭圆的右焦点为,且经过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.
经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:
(1)按分层抽样的方法从质量落在,的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:
A.所有黄桃均以20元/千克收购;
B.低于350克的黄桃以5元/个收购,高于或等于350克的以9元/个收购.
请你通过计算为该村选择收益最好的方案.
(参考数据:)
如图,在四棱锥中,底面为矩形,平面平面,,,、分别为、的中点.
(Ⅰ)求证:;
(Ⅱ)求证:平面平面;
(Ⅲ)求证:平面.
已知数列满足,,其中为的前项和,.
(1)求;
(2)若数列满足,求的值.
已知函数,其中为自然对数的底数,若函数与的图像恰有一个公共点,则实数的取值范围是______.