(1);(2)等边三角形.
【解析】
(1)利用余弦定理表示出cosA,然后根据正弦定理化简已知的等式,整理后代入表示出的cosA中,化简后求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;
(2)由A为60°,利用三角形的内角和定理得到B+C的度数,用B表示出C,代入已知的sinB+sinC=中,利用两角和与差的正弦函数公式及特殊角的三角函数值化简,整理后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由B的范围,求出这个角的范围,利用特殊角的三角函数值求出B为60°,可得出三角形ABC三个角相等,都为60°,则三角形ABC为等边三角形.
(1)由2asinA=(2b-c)sinB+(2c-b)sinC,得2a2=(2b-c)b+(2c-b)c,即bc=b2+c2-a2,
∴cosA=,∴A=60°.
(2)∵A+B+C=180°,
∴B+C=180°-60°=120°,
由sinB+sinC=,得sinB+sin(120°-B)=,
∴sinB+sin120°cosB-cos120°sinB=,
∴sinB+cosB=,即sin(B+30°)=1,
∵0°<B<120°,∴30°<B+30°<150°,
∴B+30°=90°,B=60°,
∴A=B=C=60°,△ABC为等边三角形.