以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程是(为参数).
(1)求直线和曲线的普通方程;
(2)直线与轴交于点,与曲线交于,两点,求.
已知函数,其中,e是自然对数的底数.
(1)若是上的增函数,求实数a的取值范围;
(2)若,证明:.
如图,在直角坐标系中,椭圆的上焦点为,椭圆的离心率为,且过点.
(1)求椭圆的方程.
(2)设过椭圆的上顶点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的方程.
端午假期即将到来,永辉超市举办“浓情端午高考加油”有奖促销活动,凡持高考准考证考生及家长在端年节期间消费每超过600元(含600元),均可抽奖一次,抽奖箱里有10个形状、大小完全相同的小球(其中红球有3个,黑球有7个),抽奖方案设置两种,顾客自行选择其中的一种方案.
方案一:
从抽奖箱中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.
方案二:
从抽奖箱中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.每次摸取1球,连摸3次,每摸到1次
(1)若小南、小开均分别消费了600元,且均选择抽奖方案一,试求他们均享受免单优惠的概率;
(2)若小杰消费恰好满1000元,试比较说明小杰选择哪一种抽奖方案更合算?
已知四棱锥中,平面,底面为菱形,,是中点,是的中点,是上的点.
(Ⅰ)求证:平面平面;
(Ⅱ)当是中点,且时,求二面角的余弦值.
在,角,,所对的边分别为,,,且.
(1)求角的值;
(2)若的面积为,,求的值.