设.
(1)求的单调区间;
(2)讨论零点的个数;
(3)当时,设恒成立,求实数a的取值范围.
已知抛物线的焦点与椭圆的右焦点重合,抛物线的动弦过点,过点且垂直于弦的直线交抛物线的准线于点.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)求的最小值.
在某大学自主招生考生中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生两科的考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B的考生有20人.
(1)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(2)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分.
(i)求该考场考生“数学与逻辑”科目的平均分;
(ii)若该考场共有7人得分大于7分,其中有2人10分,2人9分,3人8分,从这7中随机抽取两人,求两人成绩之和大于等于18的概率.
如图,面,,,E为的中点,F为的中点且
(1)求证:面面
(2)求三棱锥的体积
已知,,若
(1)求在区间的单调增区间;
(2)在中,a、b、c分别是角A、B、C的对边,,其的周长为6,求的面积的最大值.
若直线与曲线恰有两个公共点,则实数的取值范围为________.