如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
已知半径为的圆上的一条动弦,且,为圆内接正三角形边上一动点,则的最大值为( )
A. B. C. D.
已知函数是奇函数,且的最小正周期为,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若,则( )
A. B. C.-2 D.2
设点A,B,C不共线,则“与的夹角为锐角”是“”的
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
若实数满足约束条件,则的最大值是( )
A. B.1
C.10 D.12
已知数列满足:,,其中表示不超过实数的最大整数,设为实数,且对任意的正整数,都有(其中符号为连加号,如),则的最小值是__________ ;