已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点,
(1)求椭圆的方程;
(2)求的取值范围;
(3)设直线和的斜率分别为和,求证:为定值.
华为董事会决定投资开发新款软件,估计能获得万元到万元的投资收益,讨论了一个对课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过投资收益的.
(1)请分析函数是否符合华为要求的奖励函数模型,并说明原因;
(2)若华为公司采用模型函数作为奖励函数模型,试确定正整数的取值集合.
在中,内角A,B,C所对的边分别为a,b,c.已知.
(1)求角B的大小;
(2)设a=2,c=3,求b和的值.
如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
已知半径为的圆上的一条动弦,且,为圆内接正三角形边上一动点,则的最大值为( )
A. B. C. D.
已知函数是奇函数,且的最小正周期为,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若,则( )
A. B. C.-2 D.2